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1 Introduction
“One important consideration in the design of gas turbine engines is limiting the amplitudes of steady-
. state vibrations of its components in order to prevent failures due to high cycle fatigue. The most widely

used damping devices incorporate especially desighed friction interfaces which dissipate energy and
reduce high frequency vibrations to an acceptable level. The study of steady-state vibrations of structures
with so-called frictional dampers has attracted the attention of many investigators. The first analytical
solution for a single-degree-of-freedom system with a Coulomb frictional joint was presented by Den
Hartog [5]. The most relevant contributions until 1979 are discussed by Plunkett [11]. More recently,
further analytical and experimental research has been reported by Griffin and coworkers [7, 13, 4],

Muszynska et al [10}, Srinivasan et ai {17], Dominic et a! [6], and Soni and Bogner [14], among others.

h ‘ - B

«—- Most analytical studies are limited to cases with one tniciion joint only, mainly due to the difficulties of

solving the nonlinear differential equations which result from the mathematical models. The available

mathematical models and methods of sofution cannot be easily extended to problems with several friction
joints, and their results do not explain completely all the experimentally observed phenomena. For these
reasons, a more efficient and rational utilization of iriction dampers still requires additional experimental

and analytical research.

in this report we present a simple, approximate, yet accurate, methodology for studying the steady-
state response of structures containing triction interfaces, but which are otherwise linear. The procedures
that are developed result in systems of nonlinear equations that would be prohibitively expensive to solve
if the globa! problem were formulated directly. This difficuity was avoided by exploiting the linearity of the
individual subsystems utilizing finite element substructuring techniques. The substructuring approach has
been widely used in mechanics to soive static problems {12], as well as dynamic problems [8, 9]. In fact,
this approach was used to analyze shrouded blades in [16]) . The work described in this report is
significantly different in that we incorporate friction constrainis at the inferfaces. In linear analyses it 's
possible o back calculate a coefficient of viscous or structural damping to produce the same peak
response as that obtained with friction damping This value, however, will depend on the level of
excitation and on the normat force at the interface; it cannot be obtained directly from the physics of the
problem and can only be calculated once the response is known. For example, in a structure that contains
a fnction interface no damping occurs if the excitation is small since the joint does not slip. However, for
larger levels of excitation. the static friztion in the joint can be overcome and rubbing can dissipate a
significant amount of energy Clearly, both conditions cannot be represented by a single value of
equivalent viscous or structural ¢amping In the approach presented here, the nonlinear damping
dissipated by friction 1s calculated directly for any level of excitation without resorting to "calibrating” the

modiel
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The organization of the report is as follows. First. the ditferential equations governing the motion of the
system under study are formulated in terms of the complete set ot system displacements. A methodology
to obtain approximate solutions of these equations is presented next, based on the assumption that only
the first Fourier component of the tangential forces in the friction joints has a significant participation in the
system response. The problem is ultimately reduced to the solution of an algebraic system of equations
relating the complex variable representation of the relative displacements and the tangential forces in the
friction joints. The use of a complex variable approach allows the development of simple and efficient
algorithms to systematically formulate the equations A procedure to solve the equations for several levels
of normal loads in the friction joints is also presented. It only requires that systems of real linear
equations be solved. Any degree of accuracy can be obtained by applying this procedure iteratively. in
addition, a criterion is established for determining when joints transition from a slipping to a fully stuck

condition.

Relevant computational issues are discussed, with emphasis on the interaction of the methodoiogy with
finite element programs. Selected examples are presented to illustrate applications of the methodology in
practical problems as well as the mosi /clevant features of the solution procedure. Some mathematical

manipulations and more detailed descriptions of the algorithms are presented in Appendices.

2 Equations of Motion

We will consider a structural system consisting of several elastic substructures connected by friction
interfaces and subjecte to prescribed harmonic loads, as shown in Fig 1. An appropriate finite element
discretization of each substructure can be carried out shown schematically in Fig. 2 Thus, the system is
represented as a set of elastic substructures with a finite number ot degrees of freedom and connected
by friction joints at some of their nodes. We will also consider that the normal loads in the friction joints
are independent of the displacements and are given as a vector of positive constants times a positive

scalar parameter, and that only dispiacements 1n the tangential direction can occur in those (oints

A typical substructure has stiftness matrix K. mass matnx M. damping matrix C. and applied nodal
loads Q, obtained by standard tinite element techrtques. | et X be the vecter of displacements. which can
be divided into two mutually exclusive vectors: X, Correspending to the degrees ol freedom not
connected to friction joints. and X, corresponding to the degrees of freedom connected to friction joints

The stiffness. mass and damping matrices and the vector of nodal 'aads can be pantitioned accordingly.

Newton's second law yeelds the follcwing equat.ons ot motion for the sehstructure

Mo KX R X, M

1

My X, « ML,X + G X 0 C




My, X, + MypXy + Co Xy + CppXyp + Kpy Xy + KppXy = Qy + F (2)

where dots denote derivatives with respect 1o time, and F is a vector containing the forces in the friction
joints, with ar appropriate sign that will be discussed later These equations can be written for each

substructure of the system, and are coupled by the friction forces, F

The behavior of a friction joint can be described in terms of the relative displacement (ditference
between the displacements of the connected nodes) and the tangential force in the joint. Here, joints of
Coulomb type are considered. This implies that when a joint, j, is sliding, its tangential force f, must satisfy
the condition f, = u)Nj, where 1 and Nj are respectively the friction coefficient and the normal torce in the
joint. The sign of the force must be opposite to that of the relative velocity. These conditions hold until a
change in the sign of the relative velocity occurs, causing the joint to become stuck or starnt sliding in the
opposite direction. When the joint is locked its relative displacement remains constant ang its tangential

force is unknown., its value being a result of the analysis.

Exact analytical solutions for the total set ot differential equations of motion are difficuit to obtain,
because it is necessary to know, at any time, which joints are sliding and which are stuck. This
information, however, is p~ 1 of the solution of the problem rather than part of the data. In general, for
each joint, an unknown number of incursions in both conditions can take place during a period of
vibration. Hence, any attempt 1o develop an exact solution in terms of piecewise lincar solutions would
lead to a problem which would have to be approached numerically and whose solution would require

excessive computer resources.

Several well-known step-by-step time integration schemes can be used to solve approximately the
equations of motion [1] The main advantage of these procedures is that any humber of slip-to-stick
changes and vice ver.a can be considered without difficulty However, for nonlinear steady-state
problems the integration has to be carried out for a long time. enough to reach the periodic state, i e
until the effect of the initial disturbances becomes negligible. Besides, to obtain accurate resulls in
multiple-degree of freedom problems, the time step has to be several times smaller than the lowest
relevant period of the system or any of the substructures For these reasons numerical integration can

become impractical even for systems with a moderate number of degrees of freedom




3 Approximate Method of Solution

In view of the difficulties of obtaining analytical or numerical exact solutions, approximate methods
have been used by several researchers [14, 6, 10]. The most widely used method is the so-called
harmonic balance method which tinds the best approximation of the response in the space of the
harmonic functions with the same frequency as that of the excitation. This method is completely
equivalent to the linearization technique proposed by Caughey [3]; its theoretical foundations have been

thoroughly studied by Spanos and twan [15].

The following assumptions are made in the harmonic balance inethod:
1. All the responses are harmonic with the same frequency as that of the excitation forces;

2. The friction force in each joint has the same direcuon s the relative velocity in the joint, but
opposite sign;

3. Only the first Fourier component of the frictior force in each joint has a significant
participation in the response of the system, ie the effects of higher components are
negligibie.

Another classical assumption is that the friction joints are atways sliding, i.e., no stuck corditions are
considered. Since in many practical cases the joints are only padially sliding, or even completely stuck,
this assumption may lead to erroneous results. A criterion to detesmine the slip-to-stuck limiting loads is
presented here, permitting the actual states of the joints to be considered correctly in the dynamic

analysis.

3.1 Equations of Motion for a Typlcai Substructure
The harmanic excitation forces in the nodes of a typical substructure can be expressed as

q) = 6’exp(i(ot) ‘ |=1,ndf

where a caret (*) denotes a complex quantity, t = time. i = -1 and ndf = the number of degrees of

freedom of the substructure

According to assumptions (1) and (3) the etements x,(1) of the displacement vector and fl(t) of the
friction forces vectors are also harmonic, i.e.

x (1) = ilexp(imt) Cj=1.ndt
f](t) = f]exp(i(s)t) . j=1.ndf
where 9(] is an unknown complex constant For a totally shding joint. the tnction torce has the shape of an

alternating square wave. Consequently. il 15 a complex constant with modulus (4mu N, where i, 1s the

friction coefticient and Nl the normal load on joint




By substituting these expressions into (1) and (2) and dropping the factor exp(iwt), the following

complex algebraic equations are obtained for the substructure:

(K11 - (1)2M1‘ + '(L)C‘])‘X‘ + (K12 - (1)2M12 + le,z)S(Z ES .O‘ (3)
(Kpy - 0May, +i0C,0) Xy + (Kgp - 02Mpp + iCp5) Xy = Qp + F @
Define

k= K, - oM +i0C) (ij=12)

= (koo kprkilky)” (5)
2= ?s(bz : i‘21"(111‘01)

xS = X,

P L f

where the superscript s indicates that these matrices correspond to the s-th substructure The matrix f(q is

called the impedance or dynamic stiffness matrix.

With the above detiniitions. (3) and (4) lead, atter solving for 3(2, to

XS = 2% 4 SFS (6)

which are equations relating the displacements ot the degrees of treedem of substructure < to the
tangential forces in its joints. A detailed derwvation of these equations for two illustrative systems is
presented in Appendix A. Vector z° contains the part of the displacements produced by the external
harmonic loads. f is called the compliance or dynamic flexibility matrix; its elements are displacements in
the direction of the degrees of freedom associated with the joints, due to unit ioads applied in the same

directions An efficient algorithm for the calculation of z° and 1 is proposed in Appendix C

Defining now F as the vector containing the triction forces in all the joints. the displacement of a generic
degree of freedom | of the substructure s ¢an be oxoressea as

x$= 254 ioF (7)

i]sand %lsare the correspending elements »f x* and 2° 1"contains the corresponding terms of 1 and, in
order to match the dimension of F contains zawos in the bl es correspending to friction forces not related
to the degree of freedom j. ™ also includes appropniate signs to account for the correct direction of the
friction forces as it s discussed in the next section. The rewnting of express, ns (6) into the form of (7) is

iliustrated in Appendix A




3.2 Equations for the Complete System
We now derive the equations for a typical system, like the one depicted in Fig. 1. The first step is to

define the relative displacements in the joints, as follows
g, = xg- X7 (8)
The superscript m can be assigned arbitrarily to any of the substructures connected by the joint j; n
denotes the other connected substructure. The subscripts k and | denote, respectively, the degrees of

freedom of substructures m and n that are connected tc joint j. This step is illustrated in Appendix A.

Expression (8) means that, by definition, a positive relative velocity in joint j points from n to m.
Therefore, according to assumption (2) at the beginning of this section, a positive friction force points from
m to n. Consequently. this force has already the correct sign when acting on substructure m, and has to
be affected by a negative sign when acting on substiucture n. This rule is used when writing equations

(7), as it is also illustrated in Appendix A. Replacing %f(s:m n: j=k.I) given in (7) into (8) we obtain
4, = (20-2)) « (- F
One equation can be written ¢+ each degree of freedom in the triction interfaces obtaining the following

system of complex algebraic equations

D-RF=2 9)

for the relative displacements in the friction joints in terms of the corresponding friction forces and known

displacements 7. Details of the derivation of R and Z for ilustrative systems are included in Appendix A.

The number of unknowns in these equations is twice the number of equations. To complete the
formulation, it is necessary to use the constitutive relationships between the joint displacements D and
torces F Within the trame of the assumptions considered in this work, the relative displacement in a
generic joint | is

(x - XMexpliot) = dexpuict) 10)

Ej! is @ complex constant that can h: exprescod as duesplit), whers d, and 6, are the corresponding

amplitude and ph e angie

By differentation of [10) the relative velocity cor be wrtlen as o oxnlio) Recalling that the friction
force in joint ) i1s expressed as f‘u) = fexpliof and that this force 1s cpposed 10 the relative velocity. we
conciude that complex constant tohas e form toapiwhere foas e (real) amplitude of the force

Detiming a, - d.f we have
N )
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di = i(‘:!ili‘j)fi = iajfi (11)

h The ratio ] is always positive and can vary between zero and infinity. Both limiting values lead to
special linear problems. a; equal to zero means that there is no relative displacement in the j-th joint. On

the other hand, a equal to infinity corresponds to the case of no normal force (and as a consequence, no

friction force) in the joint.

Equation (9) can be now written as
[IA-R)F=2 (12)

where A is a real diagonal matrix with entries a.

For prescribed values of A, (12} is a linear system ot complex equations for the triction forces F that
can be solved directly. We are, however, interested in solutions for prescribed normal forces in the joints,
i.e., for prescribed amplitudes of F and not of A . In this case, a cannot be calculated directly because the
values of dl are still unknown. This problem is addressed in the next section, as part of the proposed

solution methodology.
" 4 An Efficient Solution Procedure

4.1 General
In the cases of interest for this report, the normal loads in the joints are prescribed as a vector of real

constants times a scalar parameter N. i. e., as

[Ni !

}Nz €.

¢ =N }> (13)
o } |
. . I |
N, €n ’

In practical design problems, it is desired to find the solution for difterent values of N, and, eventually.
to calculate the N for which the response controlling the design (d:splacement. stress, etc) is a minimum.

This 1s the optimum vatue of the parameter N

if the joint §, with friction coefficient (. is sliding, the amplitude of the triction force in that joint is 1' =

(A/n)u'N'. In this joint_ the relative displacement has an unknown amplitude d,

7
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in general, for a given value of N, some joints will be sliding, and the rest will be locked. There are two
limiting conditions; the first one occurs for high values of normal forces, preventing any slip of the joints.
In this case the governing equation (9) reduces to R F = -Z, which can be solved directly. The other

limiting case corresponds to no normal forces (N = 0) and, consequently. no friction forces in the joints. All

the joints are slipping, and the relative displacement D are equal to Z

it can be easily shown that Gaussian elimination of the equations corresponding to the locked joints
{using the condition that the relative displacements are zero) yieids s reduced system of equations of the
same form as (9), but containing only terms related to the sliding {oints. As pointed out before, it cannot
be asserted that the amplitude of all of the forces is tl = “’"mnNr because this is acceptabie only for joints
that are at least partially shiding. For a focked joint the value of f, is completely unknown and must be

determined as part of the solution.

4.2 The Basic Step

The solution algorithm developed in this work is summarized in this section. It essentially consists of
finding first the solution when all the joints are slipping. and then, using perturbations, progressively
calculating the solutions as the normal loads are increased. The basic step of the algorithm is presented

next.

Equation (3) can be wriiten as

F+KD=F, (14)

where K = -R ! and 'FO = KZ. Assume that solution vectors F and D for normal forces defined by N = No

are known The solution for another, close, value of N = Ny + AN 1s desired  Let ?1 and b, denote the

new solution vectors, and define AF and AD so that

‘F‘=‘F+A.F and.D1=.D+A‘D (15)

Since F and D satisty (14) we can write

AF +KAD =0 (16)
Note that this is an exact relationship between the complex increments ot triction torces and relative

displacements. Recalling that the elements of F and D in the known solution are a, = dexp(it) and f, =

-if,exp(iO,), the increments can be approximated by truncated Taylor's series expansions as follows

Aa, = explif)Ad, +i3A8)

Al = -iexp(i0 At + ‘il?\()l

Substitution into (16), after algebraic manipulations, yields the following system of incar equations for

the increments of amphitudes and phaze angles of tha relative displacements

8

w




BAd + BHA8 = Af (17

BAd +(G-BH)A8 = 0 (18)
where B, and B, are the real and imaginary parts of the complex matrix product U'KU. Uis a unit complex
diagonal matrix with nonzero elements ﬁu = exp(iej)'iJ' is the complex conjugate of U. Ad and A9 are real
unknown vectors of amplitudes and phase angles of the relative displacements. H and G are real
diagonal matrices with nonzero elements d1 and tj, respectively. AF is the known vector of increments in
the amplitudes of the friction forces. Note that the matrices defining the coefticients of the system (17) and
(18), which are used to estimate the solution each time N is increased, are expressed in terms of the

knowri solution.

Solving for Ad and A8 we have an approximation for AF that can be used 1o compute i:, and b,. The
accuracy of this-approximate solution can be veritied by computing ?:2 = i—'o - kb1, and comparing 312 with
if,. if the comparison is not satisfactory, it is possible to compute a new starting solution that satisfies (14)
calculating the ratios 3= d/fl with b1 and the desired values of the ampiitudes of the tangentiaf forces.
introducing the estimated 3 into (12) another vector of forces, ?3, is obtained. In general, i:a will be
different from if,. The amplitudes of the elements ot the complex vector (353 - 331) can be taken as a new
vector Af in (17) using i—'s to compute the coefficients of equations (17) and (18). The steps can be

repeated iteratively in the following manner until a desired accuracy is reached.

1. Solve the system under the assumption that all the joints are slipping,

and define the initial values of 1, f?,

2. Increase the value of uN.

2.1 Compute Af, vector of increments of the ampiitudes of the

tangentiai forces Af, = fl‘- t?

2.2 Compute Ad, vector of increments of the ampiitudes of the

relative displacements

2.3 Calculate the new relative displacements. d'= d%+ Ad,.

and the ratios a, = d}?fl’A
2.4 Solve equations (12) and compute 1‘2.

2.5 If. within some acceptable tolerance. t2= t/continue with 2 6

> 1t not. set 0= 1fand start 2.1 again




2.6 Verity that all the joints are actually slipping, i.e. it alt d/
are positive Yes, define (,°= {2and consider the next
value of uN (go to 2). No, eliminate equations corresponding to the

locked joints (negative amplitudes) and start 2.1 again.

3. The procedure finishes when all the joints are locked.

4.3 Slip-to-Stick Transitions

In the previous section it has been assumed that all the jonts are slipping This assumption is certainly
valid when the joint normal loads are small but must be checked as N increases. As N increases, the
amplitudes of the relative joint motions decrease. When the calculated amplitude of a joint's relative
motion becomes zero (or negative} that joint 1s considered lockzd for subsequent analyses, the amplitude
of its refative motion is set identically equai to zero and the associated degree of freedom may be
eliminated from the set of nonlinear algebraic equations Thus. the number of nonlinear equations that
must be solved becomes progressively smaller as the normal loads are increased and the joints lock.
When a joint is considered locked, the force transmitted by triction through it may be calculated as a resuft
of the analysis. The joint is actually locked if the amplitude of the force is smaller than uNel. The slipping
and stuck models are then said to be compatible and there is no transition region where the simple

harmonic assumption breaks down.

in solving the numerical example described in the next section, it was found that convergence to
negative values for the amplitudes of the relative displacements is possible. Examining equations (18}, it
can be observed that no restrictions are imposed on the values of the increments of the relative
displacements Ad in order to prevent this condition. The physical interpretation of a negative amplitude is
that the corresponding joint 1s already locked and this condition can be used to eliminate that joint from
the system of equations. For this reason. it is imporiant to have an accurate criterion for establishing at

what normal loads each joint becomes stuck Such a criterion can be formaiized in the following manner.

We start with the solution for pN = N, for which all the joints under consideration are sliding. The
friction forces and the relative displacements are f; = (4/mjeuN, and d,. respectively. The desired
solution corresponds to an unknown value of uN for wihich f = {4ix)e ui Theretore, the differences in the

amplitudes of the friction forces are
Al = (rm)(t-fo) = (A/mi(e ) (uN-uNy} - (4rhte ) AuN) (19)

Solving (17)-(18) for a unit incrermentin uN 1o for AL = 4 w2 wa obtarr increments \d| for the relative
. ; :

displacements. The 1otal values are

10




For AN yielding di = 0 the joint | will become locked. Applying this condition to each joint, n values of
pN are obtained, where n is the number of joints under consideration. The key result is the smallest value
of normal load increment for which lock up occurs since it is the corresponding joint which will be the first

to stop slipping.

5 Computational Issues

The several steps of the methodology proposed 1n this work are suitable for incorporation in computer
codes. Detailed rules to camry out automatically such steps are provided in this section, including the
required data structures and some particular numerical algorithms. All the matrices and vectors used in
this section are complex; however the carets (*) used in remainder of the text to distinguish these

quantities form the real ones have been omitted, to obtain a more readable text.

The calculation of stiffness, mass and damping matrices requires only standard finite element
techniques, whose efficiency and computer implementation are widely discussed in the technical literature
on the subject and will not be discussed here. This section deals with steps of the methodology that are

not direct applications of finite element procedures.

5.1 Compllance Matrices of Substructures
The starting step of the formulation is Eq. (6). The reduced compliance matrix r of the substructure s

of this equation is defined in Eq. (5) as the inverse of the reduced impedance matrix, namely as
r* = (Kpp - Ky KK o) !

The vector 2° is also defined as a reduced displacement vector, in terms of the inverse of K,,. The
impedance matrix of a substructure can be calculated with any finte element code.  With this, the
required matrix partitions, inversions and products could be performed directly However. it is more

efficient to proceed as foliows:
a. Compute the total impedance matrix of the substructure. K
b. Solve Ky = Q (the load vector, Q, is known).

c. Select the terms of y corresponding to degrees of freedom connected to

friction joints. This constitutes the reduced vector z

11




d. For each degree of freedom, j, connected to a friction joint:

d.1 Form a unit load vector, q, with all its terms equal to zero except

the j-th term, which is equal to 1.
d2SolveKy=q.

d.3 The j-th column of r is formed by the terms of y corresponding

to degrees of freedom connected to friction joints.

5.2 Automatic Generation of the System’s Equations

A detaited derivation of the equations relating the relative displacements and the tangential forces in
the joints for two illustrative systems is presented in Appendix A. A simple algorithm for the automatic
generation of these equations for any given system, stanting from the reduced compliance and
displacements matrices, r® and z°, of the substructures forming the system, consists of the foliowing

steps:

a. Assign an order number s to each substructure and an order number ) to each

friction interface.

b. Recalf that the rs matrix of substructure s is reduced to its degrees of
freedom connected to friction interfaces. Consider S partitioned
according to those interfaces. Let p be the number of partitions. A
typicaltermof rSis 1§, u,v=1,p
A similar partition for vector z° results in a typical element z3, u=1,p

c. For each triction interface detfine, arbitrarily, a direction for the relative
displacements, i. e., a "starting” reference substructure. m, and an “ending"”

substructure, n. The relative displacement in joint j is given by

= xM x"
dj_x.' X

where x[Is the total displacement of substructure m in the direct:ion

of its degrees of freedom connected to the joint, i. A similar

definition applies to x]!

d. Form an incidence vector, VS, for each substructure < containing °®

the order numbers of the interfaces to which substructure s 1s connected

12
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Observe the following rules:

d.1 the size of the vector is p;
d.2 the order of the incidences agrees with that used when computing r;

d.3 the sign of an incidence is positive if s is a starting substructure

for the corresponding interface and negative if the substructure is

an ending one.

e. Form the system matrix R by adding the contributions of each

substructure, as foliows:
e.1 the size of the matrix is equal to the total number of friction joints;

e.2 add p? terms of the form ¢S, ;

e.3 define iu = u-th term of the incidences vector V®, and iv = v-th

term of the incidence vector V®;

edr,, isadded to R, . with the sign of the product {iu)(iv).

f. Form the system displacements vector Z, by adding the term zJ

to Z

w» With the sign of iu.

Note the similarity between these rules and those to form the stiffness matrix of a structure from the
element matrices in the Direct Stifiness Method . All the advantages of this method, such as sparsity,

banded or skyline shapes. etc. are in fact preserved

The proposed algorithms have been applied to the illustrative systems depicted in Figures 10 and 11 in

Appendix C. Additional rules are presented there to include some particular cases.

6 Numerical results
To verify the accuracy and applicability of the methodology, the solution of the one-joint problem

depicted in Fig. 3 was computed over a range of values of the system parameters using the approximate
method and the results compared with exact solutions. The exact solution was developed in 2] by
exploiting the piecewise linearity of the differential equation, i e , when the joint is slipping the friction force

is constant and the solution can be represented by one set of harmonic functions with unknown

13
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coefficients, and when the joint is stuck the system is also linear and can be represented by another set
of harmonic functions with unknown coefficients. The coefficients are calculated along with the time at
“ which transition occurs between slipping and sticking by forcing the solutions to satisty the appropriate

continuity and periodicity conditions. In general, the results from the approximate procedure compared
quite well with exact solutions [2). Representative results are shown in Table 1 for M, =M, = 05, K, =
025, K, =075 Q=10 a=3=00 and C, = C, = 1 percent of critical. The two cases shown in the

table are for excitations frequencies of w = 0.707 and v = 1.0. These frequencies are particularly
interesting since the first corresponds to the resonant frequency that the system would have if the damper
were slipping all the time, while the second is the resonant frequency of the system when the damper is
stuck all the time. Consequently, these two frequencies turn out to be the frequencies of most interest in

the limit for either very large or small excitations, respectively.

Part (a) of the table shows exact anc' approximate results for w = 0 707. As is indicated by the table
the approximate method provides resuits which are in close agreement with the corresponding exact
values. Pant (b) of the table shows exact and approximate results for w = 1.0. In this casc the
approximate procedure was less accurate, but still adequately predicted the absolute displacement of the
masses. The absolute displacement of the masses were of comparable magnitude; consequently, smali
errors in their values resulted in relatively large percentage errors in the relative displacement as it
approached zero. This is a limitation of the approximation caused by the fact that it slip occurs the
Fourier coefficient of the friction force is taken to be 4/n, independently of the amplitude of the relative
motion. In faci, this value must converge to unity as the relative motion goes to zero and it is this
discrepancy that induces the errors previously cited. A number of procedures were tried for
approximating this transition of the Fourier coefficient from 4/r to 1 as the amplitude of the relative motion
went to zero. In general, none of the approaches worked (on the average after taking all frequencies of
excitation into consideration) any better than the simple one ulilized here of setting the Fourier coefficient

equal to 4/n when the joint slips.

In summary the approximate approach used in this report proved to be a relatively accurate method for
calculating the absolute and relative motions of the vibrating masses except for small relative motions at
an excitation frequency near the natural frequency of the locked system. Under these conditions, it

adequately predicted the ahsolute motion of the masses and qualitatively predicted the correct trends, but

yielded significant percentage errors in values of relative motion between the masses. This is a limitation

of the approach that should be taken into consideration in its use

To demonstrate the applicability of the methodology 1 design problems we have analyzed the system
- ®
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with two substructures and two friction joints shown in Fig. 4. Plate finite elements (including only bending
deformations) were used to caiculate the stiffness and mass properties of each substructure and
structural damping was set at 1 percent of critical damping. The stiffness matrices are also presented in
Fig. 4. External loads amplitudes Q,= 1 and Q, = 1 were considered. The normal forces in the triction

joints are definedby e, = 1and e, = 2.

The natural frequencies and modes of vibrations for the system wilh the joints locked, and for
substructure 1 isolated were calculated (substructure 2 was considered massless). The mode shapes for
the isolated substructure are shown in Fig. 4. The mode shapes for the total system are similar, but

correspond to higher frequencies. In both cases, the first mode is flexural, and the second one, torsional.

In the dynamic analysis the excitation frequency was varied between 400 and 1500 rad/sec to include
the four possible resonant conditions (see values below) Several values of the normal force in the joints

were considerad.

Results are summarnzed in Figs. 5 through 9. In Fig. 5 the maximum horizontal displacement of
substructure 1 in the joint 1 is presented as a function of the excitation frequency. The first peak in Fig. 5
corresponds to the first natural frequency of substructure 1 (0 = 586 rad/sec) and occurs when there are
no forces, and consequently no energy dissipation, in the joint. If the normal forces increase, the
response for that particular frequency decreases quickly. However, for frequencies close to the first
natural frequency of the complete system (o = 702 rad/sec) the response increases very rapidly, and a
second peak is reachea. This peak has its maximum value when the normal forces are high enough to
keep the joints locked, preventing energy dissipation by friction. The variation of the response around
these frequencies can be more clearly appreciated in Fig. 6, where the first part of Fig. 5 is repeated with
an enlarged frequency axis. Peak responses also occur for the corresponding second natural frequencies

{w = 1215 and 1412 rad/sec). but their values are only 23% of the former ones.

Fig. 7 shows values of the normal forces tor which & change from the stuck to the sliding condition {or
vice versa) occurs in each friction joint. For a prescribed frequency. a joint is locked for normat forces that
e ¢ 1ed the value given in the corresponding curve. For given normal foads, a horizontal line can be
drawn in Fig. 6 to find the limiting frequencies for which each joint is either always stuck or always sliding.
The slip-to-stuck curve has a peak at w = 702, the first resonant frequency when the joints are locked.
The reason is that the lar :st tangential forces in the joints under harmonic excitation occur for this
resonant condition, requirit ‘e maximum normal loads to prevent siipping. The slip-to-stuck curve for a
wider range of frequencies is presented in Fig. 8, where it can be appreciated that a second peak exists

for the second (torsional) resonant frequency of the locked system
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Results presented in Fig. 9 can be useful for design purposes. This figure shows the maximum value,
Xymax: Of the displacement at node 1, as a function of the parameter uN defining the normal forces in the
joints. It was obtained by considering alt the possible values of the excitation frequency, i. e., by taking the
peak values of the response curves of Fig. 5. The optimum value of uN is the one that gives the minimum
value of x, .., (0.6 in this case). A similar curve was developed for the displacement in node 2, and the
same optimum value of uN was obtained. Curves correspondirig to any other response of interest can be
easily constructed. Naturally, it is highly desirable to design the friction joints to have values of the normal

forces close to the optimum ones.

7 Conclusions

A simple methodology for analyzing the steady-state vitrations of linear structures containing friction
interfaces was presented. The numerical problem is reduced to the solution of systems of linear algebraic
equations. Well-known, efficient algorithms can be used tor this purpose. The main hypotheses are that
the response is harmonic with the same period as that of the excitation, and that only the first Fourier
components of the friction forces have a significant participation in the dynamic response. It can be noted
that, for the simple Coulomb model of friction used here. the Fourier series for the nonlinear forces would
contain only odd integer multiples of the fundamental frequency. and that the amplitudes of the terms
decrease at least as fast as their frequencies increase. Consequently, we would expect relatively minor
contributions from the higher order harmonics that have been neglected. As a result, we expect the

solution procedures presented here to be reasonably accurate in most situations

Within the frame ot the above assumptions, the complex variable approach presented here is an
efficient and systematic tool which can be utilized to derive the equations governing the motion of the
friction joints in terms of their relative displacements and tangential forces. In fact, it is possible to
formulate the equations in a similar manner to the direct stiffness method, taking advantage of the

topological and storage procedures devised for such a method

The comparison of numerical results for the single-joint problem of Fig 3 shows that the approximate
methodology can yield very good estimates of the exact results. The major discrepancies occur when the
joints are only partially sliding, because in these cases the tirst t ouner coefficients of the friction forces
are closer to unity and not to 4/m. The errors could be reduced by using some rules to caiculate the
Fourier coefficient as a function of the normai forces in the jomts These rules can be easily incorporated

in the methodology: however, their general applicability mus! be carefully verified firs

The linearization concepts proposed in this work can be used tor systems with fnction interfaces
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obeying different constitutive laws. In general, assuming that the response is harmonic, the differential
equations can be transformed into a system of algebraic nonlinear equations relating relative
displacements and friction forces in the joints. The equations can be linearized by considering truncated

Taylor expansions in terms of the increments of the unknowns.

A criterion to determine the slip-to-stuck transitions in the joints is required to correctly formulate the
problem under study, whatever method of solution is employed. It can be appreciated in Table 1 that it is
mathematically possible to obtain negative amplitudes for the relative displacements in the joints. Similar
results were obtained in the two-joint probiem. Physically, this would correspond to friction forces with the
same, not opposite, direction as the relative velocities. In reality, the joints are locked, and that physical
fact must be incorporated into any solution procedure one may use to calculate the response for high joint

normal loads.

The inclusion of possible locked joints allows a direct extension of the methodology to systems
comprising substructures continuously connected, like the bladed disks of turbine engines or similar
circumferentially periodic structures. The continuous interfaces can be treated as friction interfaces with

the joints always locked.

The methodology presented here constitutes a good compromise between numerical effort and
accuracy. This is particularly true when a large number of cases have 1o be solved. For instance, the
derivation of optimization curves, as that depicted in Fig 9, requires solutions for a wide range of
frequencies, for each cet of normat load values. In this case, the methodology takes advantage of the
already known solutions to find additional ones. In addition, if an exact solution is required, the
approximate results could be used as initial conditions to solve the differential equations of motion using
finite difference methods. This would significantly reduce the time for which integration has to be carried

out, since the initial guess would be close to the steady-state solution
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Nomenclature

A diagonal matrix with entries a,
a, ratio d/fi

B, imaginary part of U'KU

B, real part of U'KU

C damping matrix

D vector of relative displacements
dl relative displacement in joint j

e factor for normal force in joint §

F vector of friction forces

f’ friction torce in joint |

G diagonal matrix with entries fl

H diagonai matrix with entries dl

i unit of imaginary numbers

K stitfness matrix

M mass matrix

N parameter defining normal forces
N' nermal force in joint )

Q vector of applied nodal tnrces

q, load applied at node |

R reduced flexibility matrix

r cor densed fexibility matrix
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t time

U complex unit diagonal matrix

X vector of total displacements

X, total displacement of node j

Z reduced vector of displacements
z condensed vector of displacements
o rat'o of force amplitudes

3 phase angle

A increment of

u friction coetficient

) vector of phase angles

0 phase angle in joint |

o excitation frequency

A caret (%) denotes a complex quantity,
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Figure 2: Finite Element Model of a Substructure
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, TABLE 1
% : COMPARISON OF RESULTS FOR THE SYSTEM OF FIG. 3
a) dimensionless frequency « = 0.707
relative displacement
displacement of mass 1
#N/Q
exact approx. exact approx.
.20 149.1 149.1 149.0 149.1
0.40 98.0 97.9 98.0 97.9
0.60 46.9 47.2 46.9 47.2
0.80 2.1 -5.6 2.5 2.1
1.00 0.0 0.0 2.0 2.0

b) dimensionless frequency « = 1.0

relative displacement

displacement of mass 1
uN/Q

exact approx. exact approx.
1.00 3.40 3.61 5.35 6.38
2.40 2.76 3.06 10.93 12.73
6.91 1.36 1.30 30.49 35.24
10.00 0.57 0.12 42.61 50.87
12.50 0.05 0.00 50.93 51.76
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APPENDIX A. COMPLEX EQUATIONS FOR ILLUSTRATIVE SYSTEMS

A detailed derivation of the complex systewns of equations resulting from the application of the
methodology 1s presented in this appendix for the two illusirative systems depicted in Figs. 8 and
9. In order to obtain general rules for deriving the equations for any system, we have tried to
include in these examples most of the situations that cam occur in practical problems. All the
quantities used n this appendix are complex, for clarity, however, the caret (") that denotes
complex in the text of the report has been supressed.

1. System of Figure 10

The system of Fig. 10 1s a typical case of several structlures interconnected by severa! fricion
interfaces. The numbers asigned 1o the substructures, to the friction joints and to the degrees of
freedom are indicated in the figure. First, the relative displacements in the jownts are defined as

follows:
2 !
d =x° -x
1 1 H
3 2
d =x -x
2 1 2
4 3
dgx - X A.l
3 1 1
. [}
d =x. -Xx
4 2 1
. 6
d = x. -x
s 3 1

These expressions coastitute Equations (8) for this system. Equation (7) can be now written for

each jomnt, including the appropiate sign for the friction forces. as follows:

X =z +r (-f)
H ( il 1
\ - - <
f zk 2 2 1 ¢
xlk ‘,l ‘rll rlZ 1 .fl‘
g -s & . ! ’ ] /
2! 2 1 2 M i v
b S t'z T, v -f,
) L 2]

\ I4 \ —_ -~ r 1
4 4 4 4 4 . )
X z r r r +f !
Sl Loy ; " 12y, | li
| & i 4} -
| 4 4 4 !
X = (7 + r r r ¢ +f
Xy [He SR T TR ¥ B of
Y Loa ) . ., !
b O iz ‘r r r.. ' +f
¥ S W 3l 20 s‘
\ e ~




F,
|
.

R B I
xI zl rll( f‘)

[ [} (]
= + 1 (-f)
xl zl ll( L]

x' 22 et 0 0 0 0 >F

x-zo<r|’ -rf 0 0 O0 >F

4 4
xl-zlo<0 0 T, T, 3>F A3
4 4 4 L}
X z. + <0 0 T, 2 r”>F
4 4 4 4 4
x3=z~(0 0 " 2 ”>F
s 5 q

The quanlities between brackels are veclors denoted as r: in expression (7) of the text. ln the
above form the x: can be replaced nto the expressions for the relative displacements A.l and
vector F can be extracted as a common factor. After reordering some lerms we obtlain equation
(9) of the text. 1 e.

where ~
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D'{du dzdsdads} A .4
- -
l - -
(r, r”) r 0 0 0
-r: (r: +r’) - 0 0
21 22 1l i1
3 3 4 4 4
R = 0 -, (r; *r}) o T, As
4 4 s 4
0 0 ’rZI ('zz"n) ’rzs
4
0 0 ﬂ'n "n (r” r )
Z -2
1 1
2 -2
1 2
Z =4 z: - zj F A .6
4 s
z, -z
4 6
zl zI

2. System of Figure 11

This 1s a system with two substructures and three friction unterfaces. The peculisrities
distinguishing this system from that of Figure 10 are that two surfaces of one substructure are
connected by a internal friction nterface, and that the other substructure has a friction interface

with the ground. The relative displacements in the joints are
d = Xl - Xl .1
1 2 1
d = x* -x
2 1 3
d =0 -x
3
)
The total displacements of the substructures in podes connected to friction jownts are 1
x! z' r r r! -f
1 1 ] 12 13 1
1 ! 1 1 1
LTI HR (T, Y T2 ’fu ®
]
] 1 ] i 1
lxl I '\ z T f12 » t {
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1, ) v o
X, z, * 4 (rzz rz|> fs 0)>F
1 1 1 1 1
X, * 2z LR ¢ (r32 r“) T, 0>F
2,2 2 2
xI zl * ( 0 l’” 12 > F
X, =20+ ( 0 r -r >F
2 22
where

T
F={f 1

Proceeding as in tb~ previous cxample, 1. e. replacing the x: into the expressions for the relative
displacements and reordering terms we obtan

D - RF =+ Z
This time we have

-
i

D=(¢:ll d d }

T s
_ ®
t
(e o' ¢! -t (' -t') 0
o222 o120 13 23
|
t 2
R - (' -r') 0 o' -r
3132 n o n 12
§
| 0 -t el ®
. 21 22 N |
1} 1
j 2 -2
2 1
2 1
= -
Z. z -z o
| : ]
‘ -2
R 2
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|
| APPENDIX B. DERIVATION OF LINEARIZED EQUATIONS (17) AND (18)
From section 4.2, the vector of increments of friction forces in the joinls can be expressed as
h ( exp1f ) Afiw fag,
expif ) Af f.a8,
h AF--:J : R G B.1
cxp(lon) Af | anﬂn‘
¢ L )
. Define
- -
exp(.lel) 0 0
0 exp(iﬂz) 0
- B.2
0 0 cxp(nﬂn)

rfl 0 0
0 f 0
2
G = : 8 3
|
|
10 0 fn
AF = { A1 Af, .. Af ) B 4
40 = { A8 a6 ... ag V' B.S

Then B.l becomes

AF = 1 O AF -1 8 a0 B.6

-~
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Similarly, if we define, in addition,

(al 0 ¢ ]
0 az 0
8 - B.7
L ° ° a2
we obtain
AD = { Ad  Ad, .. Ad } B.8

the vector of increments of the relative displacements 1s expressed as
aAD -0 aD + 1 R a0 B.9

Substitution of B.6 and B9 into Equation (16) ytelds

-1UAF » 1648 + R(DAD + 1fA@) = 0 B.10

Note that U (defined i A.2) is a umt matrix such that its inverse 1s also its complex

conjugate, 1e.. 07 = 0% Premultiphication of B .10 by 0° gives

1D*0AF + 1 0°CGa0 + U'R0OAD + (O'RAAG = o B.11

Define now the following real matrnices:

!

f 0 0 |
1
o 1 o |
et ]
G = ‘ B.12
E 0 0 f“|
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h I-O 0 dn-‘

Considering the definitions of U, & and A we have

5=-=i06 B.14
f=i10H B.15

and B .11 can be written as

-1AF + 1GA® + U'RO(AD + 1HA®) = 0 B.16
4
It can be easily verified that the elements of the complex matrix product U°R U are
6 =L explid - 8)] B.17
nm nm m n
Let Br and B, be the real matrices contaiming the real and the imagmnary parts of the terms Bm.
Le.
O'RG =B - 1B B.18
Introducing B.18 into B.16 we have
-1AF + GA®O + (B« 1B)YAD + 1 HA®) = 0
¢ Equating separately the real and imaginary parts of lhis equation lo zero. equations (17) and (18)
of the text are obtained.
4
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APPENDIX C. VERIFICATION OF ALGORITHMS

Algorithms for the automtic derivation of matrix R and vector Z that define the complex system
of equations in the methodology proposed in this work are presented in section 6 of the report
The purpose of this Appendix is (o illustrate and verify the algorithms by applymng them to the
representative systems depicted in Figures 10 and 11. Additional rules are also presented for the
inclussion of particular cases in the general algonthms, and the required data structures are
developed. Even though all the matrices and vectors used in this Appendix are complex the caret
(*) used in the iext lo distinguish these quantities form the real ones have been omited, to oblain
a more readable text. The letters denoting the steps are in agreement with those used in the
presentation of the algorithms in section 6.

1. System of Fig. 10
a. The numbers assigned to the substructures and to the friction interfaces are presented in Fig.
10. In this case s = !,....6 and j = l.....5.

b. The reduced compliance matrices and displacement vectors of the substructures have the
following sizes:

substructure, s size, p
1 1
2 2
3 2
4 3
5 1
6 1

The corresponding matrices, r’, and vectors z' are all shown n section ! of AppendixA/, where
they were used to wrnite Equations 7 for this system. Substructure 3 15 a particular case because
the rigid hink indicates that the same degree of freedom is connected to two substructures. and
consequently the original size of matrix P Q by 1) does not agree with the size required by the
aigonithm (2 by 2). To resolve this discrecpancy a new, enlarged, matrix r’ is formed by

3

repeating the original matrix as necessary. Specifically, the original matrix r° = r:’. becomes

L] k]

r T
3 11 11

3 3

T

11 "

¢. The relative dispiacements in the friction interfaces have been defined at the beginning of
section | of Appendix A. In tabular form those definitions can be expressed as:

~
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jont, j m n i 1
i 2 1 1 1
2 3 2 1 2 »
3 4 3 1 !
4 4 5 2 1
5 4 6 3 1
d In agreement with the previous definitions, the incidences vectors, V', for the substructures
are
vl -1
»
Vie (41 -2
vi- (2 -3
Vi (+1 4 +5 >
s »
1 Vis (-4
Vs <-5)
V' indicates that substructure 1 1s connected to friction surface 1 as ap “ending” substructure. »
v’ and V® have a similar interpretation. V' shows that the first degree of freedom of
substructure 3 5 connected to surface 2 as a “staring” value whereas the second degree of
freedom 1s connected to surface 3 as an “ending” value. According to V', the three degrees of
freedom of the "starting™ substructure 4 are connected to surfaces 3, 4 and 5, respectively. [ ]
c. Following the rules to form the system compliance matrix, R, for the first substructure we
have u = v = | and w = 1v = -1. Therefore. the product (iu)(iv) is positive and r:l has to be
added to R'' . Substructure 2 has u = v = 1,2 with an incidences vector <l.-2>. We have to
o
‘ add 2x2 terms as indicated n the following table: )
u v u 1\% sign of add to
Gu)Qiv)
,
1 1 1 1 . r R d
! 1 "
1 2 I -2 - 2 R
12 12
2
2 1 -2 1 - T R
n 2
2> 2 -2 -2 * T22 R., ®
4?2
LJ




A similar table for substructure 3 is:

!
|
u v 1 iv sign of add to
(urQav)
3
1 1 2 2 - T R22
3
1 2 2 -3 r Rz3
R

1
11

r
" 33

Performing the additions for the six substructures, the matrix R shown as expression 1.5 in

Appendix A is obtained.

f. To form vector Z the term z: of substructure | 1s added to Z' with a munus sign; the term
zf of substructure 2 is also added to to Z' but with a positive sign, while the term zz of the
same substructure 1s added to Z° with a vegative sign, and so on. The result is expression 1.6 of

Appendix A.

2. System of Fig. 11
a. The numbers assigned to the substructures and lo the friction interfaces are included in Fig.

11. In thus case s = 1,2 and j = 1,2,3.

b. The reduced compliance matrices and displacement vectors of the substruclures have the

following sizes:

substructure, s s1ze, p
1 3
2 2

The corresponding matrices, r', and vectors z' are ali shown in section 2 of Appendix A.

c. The relative displacements in the friction interfaces have been defined at the beginming of
section 2 of Appendix A. Ip tabular form we have

~
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Joint, ) m n i }
1 1 ! 2 1
2 2 I i 3
3 0 2 0 2

The 'starting™ substructure for joint 3 is the ground, which is indicated by assigning zero

values to m and i
d. The incidences vectors, V', are

Vi = -l +1 2>

<
"

<+2 -3
e. Following the rules to form the system compliance matrix, R, expression [.8 of Appendix A
is obtained.

f. The system dispalcements vector Z is expression 1.9 of Appendix A.

3. Basic Data Structure

The basic data structure to represent a system with friction interfaces 1s the table defining the
relative displacementes in the joints, namely the table conlamming m, n, i and | as a function of
the jomnt number, j. The vectors V' that are used to form R and Z can be constructed

automatically from the table using the following rules:
a) The i-th element of vector V" contains the joint number j with a posilive sign:
b) the I-th element of vector V" contains the joint number j with a negative sign.

¢) Apply a) and b) to all the joints. 1e. to all the rows of the lable, to obtain all the tlerms

of all vectors V'
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